

Future

Operationeller Wasserdampf-Profiler (Raman Lidar) für das Meteorologische Observatorium Lindenberg

3rd Workshop "Lidar Research Water Vapor and Wind " Universität Hohenheim 15. – 16. September 2004

• Laser output power 150mJ@355nm with 30Hz

Raman Lidar for Autonomous Operation

- **O** Flash lamp pumped Nd:YAG laser
- **O** "Oversized" far field telescope
- **O** Autonomous neutral filter bank
- **O** Task sharing computer network
- **O** Multi sensor housekeeping system with remote access

Housing

20ft standard container

2 air conditions & 1 heat exchanger Temperature stability ±1°

Housing

Laser orbox 2300*1340 2300*4200 2500*6210 Laser 2500 420 2800*6210

20ft standard container

2 air conditions & 1 heat exchanger Temperature stability ±1°

optical bench

- O Total size: 4000 x 1200 mm²
- Aluminium brackets
 200 x 80 mm², l_y=2182cm⁴
- **O** Total weight about 950kg
- O Bending < 1/10mm
- **O** 2 Breadboards

Laser

Continuum Powerlite 9030

- O Repetition Rate 30Hz
- **O** Energy

Ο

- Divergence 0,5mrad
- **O** Injection seeded

Telescopes

Narrow field of view

- O Cassegrain (parabolic primary mirror f 2.5, hyperbolic secondary mirror), f 7.4
- O Ø 32" (~80cm)
- Protected Aluminium coating (R > 85%@355nm)
- Surface roughness 2λ P-V (rms ~0,6 λ)

Wide field of view

- O Dall-Kirkham (elliptical primary mirror, spherical secondary mirror) with reducer, f 3.3
- O Ø 8" (~20cm)
- O Fiber coupled, Ø 1,7mm
- O Enhanced Aluminium coating (R > 85%@355nm)

Attenuation

- **O** Motorised attenuation stack
- **O** Standard filter sizes up to 2" diameter
- **O** Filters and optical path completely covered
- **O** Electronic feedback of filter status
- **O** Can be stacked in unlimited numbers
- \bigcirc 2ⁿ attenuation levels for *n* units (200 x 100 x 17 mm³)
- **O** BCD-code addressing through standard PC interface

Filters & Beam splitters

Barr Associates Inc.

- O Interference Filters (355, 387 & 408nm)
 - > Transmission > 80% (>60%@355nm)
 - Bandwidth (2,0 ± 0,4)nm
- O Dichroit Beamsplitter (387 & 408nm, 45°)
 - > Transmission > 90%
 - Reflection > 90%

K A Y S E R - T H R E D E

Technical Data

Transmitter:	Nd:YAG laser (355 nm), 300 mJ@ 30 Hz
Receiver telescope 1:	(Wide field of view) Ø 200 mm, f/D 3.8, fiber coupling
Receiver telescope 2:	(Narrow field of view) Ø 813 mm, f/D 7.3
Receiver channels:	2 x [355 nm, 387 nm, 408 nm]
	Hamamatsu PMT (R4220P) or EMI
Data acquisition:	Licel, 6 x photon counting (250 MHz)
	(optional 20 MHz@12 Bit analog)
System control:	LabView 7.1

KAYSER-THREDE

BUSINESS UNIT OPTICAL SYSTEMS

KAYSER-THREDE

Autonomous Operation

- Autonomous start-up in the evening via Sunset-Time (currently night time operation only)
- Several external sensors looking for environmental conditions (cloud base, rain, brightness)
- O External sensor 'ok' → open skylight
- O Internal sensors 'ok' \rightarrow looking for correct optical attenuation for each channel
- **O** Start measurement
- Sensor signal above critical value \rightarrow stop measurement and close skylight
- O Sensor signal 'ok' → continue
- **O** Autonomous finalise measurement at daybreak

